top of page
  • Writer's pictureGraham Exelby

References for Brainstem Hypoperfusion, Coat Hanger Pain and PEM.

Graham Exelby September 2024


 References:


1.     Hira, R et al. Objective Hemodynamic Cardiovascular Autonomic Abnormalities in Post-Acute Sequelae of COVID-19. 2022. Canadian Journal of Cardiology. DOI: https://doi.org/10.1016/j.cjca.2022.12.002

2.     Seeley MC, Gallagher C, Ong E, Langdon A, Chieng J, Bailey D, Page A, Lim HS, Lau DH. High Incidence of Autonomic Dysfunction and Postural Orthostatic Tachycardia Syndrome in Patients with Long COVID: Implications for Management and Health Care Planning. Am J Med. 2023 Jun 29:S0002-9343(23)00402-3. doi: 10.1016/j.amjmed.2023.06.010. Epub ahead of print. PMID: 37391116; PMCID: PMC10307671.

3.     Exelby,G. Assembling the Pieces in POTS. 2024. https://www.mcmc-research.com/post/assembling-the-pieces-in-pots-part-1

4.     Falconer, M., Weddel,G.,Costoclavicular Compression of the Subclavian Artery and Vein. Lancet, 1943: ii: 539-44

5.     De Silva, M. The Costoclavicular Syndrome: a “new cause.” Annals of Rheumatic Diseases, 1986; 45, 916-920

6.     Nicolaides AN, Morovic S, Menegatti E, Viselner G, Zamboni P. Screening for chronic cerebrospinal venous insufficiency (CCSVI) using ultrasound: recommendations for a protocol. Funct Neurol. 2011 Oct-Dec;26(4):229-48. PMID: 22364944; PMCID: PMC3814564.

7.     Exelby,G. Intracranial Hypertension, the link between Vascular and CSF Dysfunction. 2024. https://www.mcmc-research.com/post/intracranial-hypertension-the-link-betweenvascular-and-csf-dysfunction

8.     Thapaliya K, Marshall-Gradisnik S, Barth M, Eaton-Fitch N, Barnden L. Brainstem volume changes in myalgic encephalomyelitis/chronic fatigue syndrome and long COVID patients. Front Neurosci. 2023 Mar 2;17:1125208. doi: 10.3389/fnins.2023.1125208. PMID: 36937672; PMCID: PMC10017877.

9.     Thapaliya K, Marshall-Gradisnik S, Eaton-Fitch N, Eftekhari Z, Inderyas M, Barnden L. Imbalanced Brain Neurochemicals in Long COVID and ME/CFS: A Preliminary Study Using MRI. Am J Med. 2024 Apr 6:S0002-9343(24)00216-X. doi: 10.1016/j.amjmed.2024.04.007. Epub ahead of print. PMID: 38588934.

10.  Fluge Ø, Mella O, Bruland O, Risa K, Dyrstad SE, Alme K, Rekeland IG, Sapkota D, Røsland GV, Fosså A, Ktoridou-Valen I, Lunde S, Sørland K, Lien K, Herder I, Thürmer H, Gotaas ME, Baranowska KA, Bohnen LM, Schäfer C, McCann A, Sommerfelt K, Helgeland L, Ueland PM, Dahl O, Tronstad KJ. Metabolic profiling indicates impaired pyruvate dehydrogenase function in myalgic encephalopathy/chronic fatigue syndrome. JCI Insight. 2016 Dec 22;1(21):e89376. doi: 10.1172/jci.insight.89376. PMID: 28018972; PMCID: PMC5161229.

11.  Wirth, K.J., Scheibenbogen, C. & Paul, F. An attempt to explain the neurological symptoms of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. J Transl Med 19, 471 (2021). https://doi.org/10.1186/s12967-021-03143-3 

12.  Hulens M, Dankaerts W, Rasschaert R, Bruyninckx F, De Mulder P, Bervoets C. The Link Between Empty Sella Syndrome, Fibromyalgia, and Chronic Fatigue Syndrome: The Role of Increased Cerebrospinal Fluid Pressure. J Pain Res. 2023;16:205-219https://doi.org/10.2147/JPR.S394321

13.  Bragée B, Michos A, Drum B, Fahlgren M, Szulkin R, Bertilson BC. Signs of Intracranial Hypertension, Hypermobility, and Craniocervical Obstructions in Patients With Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Front Neurol. 2020 Aug 28;11:828. doi: 10.3389/fneur.2020.00828. PMID: 32982905; PMCID: PMC7485557.

14.  Verger, A., Kas, A., Dudouet, P. et al. Visual interpretation of brain hypometabolism related to neurological long COVID: a French multicentric experience. Eur J Nucl Med Mol Imaging 49, 3197–3202 (2022). https://doi.org/10.1007/s00259-022-05753-5

15.  Hotowitz,T, Pellurin,L, Zimmer, E, Guedj,E. Brain fog in long COVID: A glutamatergic hypothesis with astrocyte dysfunction accounting for brain PET glucose hypometabolism. Elsevier, Medical Hypotheses. https://doi.org/10.1016/j.mehy.2023.111186

16.  Exelby,G. Amino Acid, Essential Vitamin and Mineral Burn off in Post Exertional Malaise. 2024. https://www.mcmc-research.com/post/amino-acid-essential-vitamin-and-mineral-burn-off-in-post-exertional-malaise

17.  Liu A, Zhou W, Qu L, He F, Wang H, Wang Y, Cai C, Li X, Zhou W, Wang M. Altered Urinary Amino Acids in Children With Autism Spectrum Disorders. Front Cell Neurosci. 2019 Jan 25;13:7. doi: 10.3389/fncel.2019.00007. PMID: 30733669; PMCID: PMC6354128.

18.  Anastasescu CM, Gheorman V, Popescu F, Stepan MD, Stoicănescu EC, Gheorman V, Udriștoiu I. A Clinical Study of Urine Amino Acids in Children with Autism Spectrum Disorder. Life (Basel). 2024 May 15;14(5):629. doi: 10.3390/life14050629. PMID: 38792651; PMCID: PMC11123416.

19.  Vittone,V, Exelby, G. DNA Mutations that Underpin POTS and Long Covid. 2023. https://www.mcmc-research.com/post/dna-mutations-that-underpin-pots-and-long-covid

20.  Wirth, K.J., Scheibenbogen, C. & Paul, F. An attempt to explain the neurological symptoms of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. J Transl Med 19, 471 (2021). https://doi.org/10.1186/s12967-021-03143-3 

21.  Li L, Acioglu C, Heary RF, Elkabes S. Role of astroglial toll-like receptors (TLRs) in central nervous system infections, injury and neurodegenerative diseases. Brain Behav Immun. 2021 Jan;91:740-755. doi: 10.1016/j.bbi.2020.10.007. Epub 2020 Oct 8. PMID: 33039660; PMCID: PMC7543714.

22.  Exelby, G. Causes of Long COVID Cognitive Impairment. (2024) https://www.mcmc-research.com/post/causes-of-long-covid-cognitive-impairment

23.  Ndwandwe C, Schwarze J, Shannon E, Sokolowska M, Sadlier C, O'Mahony L. Immune Mechanisms Underpinning Long COVID: Collegium Internationale Allergologicum Update 2024. Int Arch Allergy Immunol. 2024;185(5):489-502. doi: 10.1159/000535736. Epub 2024 Jan 22. PMID: 38253027.

24.  Exelby, G. Intracranial Hypertension, Intracranial Hypotension, CSF Leaks and Craniovascular Pressure Change.  2024. https://www.mcmc-research.com/post/intracranial-hypertension-intracranial-hypotension-and-craniovascular-pressure-change

25.  Song J, da Costa KA, Fischer LM, et al. Polymorphism of the PEMT gene and susceptibility to nonalcoholic fatty liver disease (NAFLD). FASEB J. 2005;19(10):1266-1271. doi:10.1096/fj.04-3580com

  1. Malengier-Devlies B, Filtjens J, Ahmadzadeh K, Boeckx B, Vandenhaute J, De Visscher A, Bernaerts E, Mitera T, Jacobs C, Vanderbeke L, Van Mol P, Van Herck Y, Hermans G, Meersseman P, Wilmer A, Gouwy M, Garg AD, Humblet-Baron S, De Smet F, Martinod K, Wauters E, Proost P, Wouters C, Leclercq G, Lambrechts D, Wauters J, Matthys P. Severe COVID-19 patients display hyper-activated NK cells and NK cell-platelet aggregates. Front Immunol. 2022 Oct 5;13:861251. doi: 10.3389/fimmu.2022.861251. PMID: 36275702; PMCID: PMC9581751.

  2. Di Vito C, Calcaterra F, Coianiz N, Terzoli S, Voza A, Mikulak J, Della Bella S, Mavilio D. Natural Killer Cells in SARS-CoV-2 Infection: Pathophysiology and Therapeutic Implications. Front Immunol. 2022 Jun 30;13:888248. doi: 10.3389/fimmu.2022.888248. PMID: 35844604; PMCID: PMC9279859.

28.  van Eeden C, Khan L, Osman MS, Cohen Tervaert JW. Natural Killer Cell Dysfunction and Its Role in COVID-19. Int J Mol Sci. 2020 Sep 1;21(17):6351. doi: 10.3390/ijms21176351. PMID: 32883007; PMCID: PMC7503862.

29.      Larsen,N.et al, Preparing for the long-haul: Autonomic complications of COVID-19. 2021. Autonomic Neuroscience: Basic and Clinical 235 (2021) 102841

30.  Brand MD, Orr AL, Perevoshchikova IV, Quinlan CL. The role of mitochondrial function and cellular bioenergetics in ageing and disease. Br J Dermatol. 2013 Jul;169 Suppl 2(0 2):1-8. doi: 10.1111/bjd.12208. PMID: 23786614; PMCID: PMC4321783.

31.  Humm AM, Bostock H, Troller R, Z'Graggen WJ. Muscle ischaemia in patients with orthostatic hypotension assessed by velocity recovery cycles. J Neurol Neurosurg Psychiatry. 2011 Dec;82(12):1394-8. doi: 10.1136/jnnp-2011-300444. Epub 2011 Jun 7. PMID: 21653205.

32.  Exelby, G. Thoracic Outlet Syndrome (incorporating Costoclavicular Syndrome) 2023. https://www.mcmc-research.com/post/thoracic-outlet-syndrome-costoclavicular-syndrome

33.  Katz DL, Greene L, Ali A, Faridi Z. The pain of fibromyalgia syndrome is due to muscle hypoperfusion induced by regional vasomotor dysregulation. Med Hypotheses. 2007;69(3):517-25. doi: 10.1016/j.mehy.2005.10.037. Epub 2007 Mar 21. PMID: 17376601.

34.  Bron C, Dommerholt JD. Etiology of myofascial trigger points. Curr Pain Headache Rep. 2012 Oct;16(5):439-44. doi: 10.1007/s11916-012-0289-4. PMID: 22836591; PMCID: PMC3440564.

35.  Appelman, B., Charlton, B.T., Goulding, R.P. et al. Muscle abnormalities worsen after post-exertional malaise in long COVID. Nat Commun 15, 17 (2024). https://doi.org/10.1038/s41467-023-44432-3

36.  Ubhi BK, Riley JH, Shaw PA, Lomas DA, Tal-Singer R, MacNee W, Griffin JL, Connor SC. Metabolic profiling detects biomarkers of protein degradation in COPD patients. Eur Respir J. 2012 Aug;40(2):345-55. doi: 10.1183/09031936.00112411. Epub 2011 Dec 19. PMID: 22183483.

37.  Hoel F, Hoel A, Pettersen IK, Rekeland IG, Risa K, Alme K, Sørland K, Fosså A, Lien K, Herder I, Thürmer HL, Gotaas ME, Schäfer C, Berge RK, Sommerfelt K, Marti HP, Dahl O, Mella O, Fluge Ø, Tronstad KJ. A map of metabolic phenotypes in patients with myalgic encephalomyelitis/chronic fatigue syndrome. JCI Insight. 2021 Aug 23;6(16):e149217. doi: 10.1172/jci.insight.149217. PMID: 34423789; PMCID: PMC8409979.

38.  McGregor NR, Armstrong CW, Lewis DP, Gooley PR. Post-Exertional Malaise Is Associated with Hypermetabolism, Hypoacetylation and Purine Metabolism Deregulation in ME/CFS Cases. Diagnostics (Basel). 2019 Jul 4;9(3):70. doi: 10.3390/diagnostics9030070. PMID: 31277442; PMCID: PMC6787670.

39.  Germain A, Giloteaux L, Moore GE, Levine SM, Chia JK, Keller BA, Stevens J, Franconi CJ, Mao X, Shungu DC, Grimson A, Hanson MR. Plasma metabolomics reveals disrupted response and recovery following maximal exercise in myalgic encephalomyelitis/chronic fatigue syndrome. JCI Insight. 2022 May 9;7(9):e157621. doi: 10.1172/jci.insight.157621. PMID: 35358096; PMCID: PMC9090259.

40.  Glass KA, Germain A, Huang YV, Hanson MR. Urine Metabolomics Exposes Anomalous Recovery after Maximal Exertion in Female ME/CFS Patients. Int J Mol Sci. 2023 Feb 12;24(4):3685. doi: 10.3390/ijms24043685. PMID: 36835097; PMCID: PMC9958671.

41.  Johnson,C. “Straining for Energy”- Large Metabolic Study Suggests ME/CFS is an “immunometabolic” Disease. Health Rising. 2021. https://www.healthrising.org/blog/2021/12/08/energy-chronic-fatigue-syndrome-immunometabolic-disease/

42.  Drane DL, Fani N, Hallett M, Khalsa SS, Perez DL, Roberts NA. A framework for understanding the pathophysiology of functional neurological disorder. CNS Spectr. 2020 Sep 4:1-7. doi: 10.1017/S1092852920001789. Epub ahead of print. PMID: 32883381; PMCID: PMC7930164.

43.  Demartini B, Nisticò V, Edwards MJ, Gambini O, Priori A. The pathophysiology of functional movement disorders. Neurosci Biobehav Rev. 2021 Jan;120:387-400. doi: 10.1016/j.neubiorev.2020.10.019. Epub 2020 Nov 4. PMID: 33159917.

44.  Peeling JL, Muzio MR. Functional Neurologic Disorder. StatPearls Publishing; 2024: https://www.ncbi.nlm.nih.gov/books/NBK551567/

45.  Hayashida K, Hirose Y, Kaminaga T, Ishida Y, Imakita S, Takamiya M, Yokota I, Nishimura T. Detection of postural cerebral hypoperfusion with technetium-99m-HMPAO brain SPECT in patients with cerebrovascular disease. J Nucl Med. 1993 Nov;34(11):1931-5. PMID: 8229237.

46.  Barnden,L., et al: Intra brainstem connectivity is impaired in chronic fatigue syndrome. 2019. https://www.journals.elsevier.com/neuroimage-clinical

47.  Nicolson GL. Mitochondrial Dysfunction and Chronic Disease: Treatment With Natural Supplements. Integr Med (Encinitas). 2014 Aug;13(4):35-43. PMID: 26770107; PMCID: PMC4566449.

48.  Ioachim, G et al. Altered Pain in the Brainstem and Spinal Cord of Fibromyalgia Patients During the Anticipation and Experience of Experimental Pain. Front. Neurol., 06 May 2022.  https://doi.org/10.3389/fneur.2022.862976

49.  Bulut,M et al. Decreased Vertebral Artery Hemodynamics in Patients with Loss of Cervical Lordosis. 2016. Med Sci Monit; 22:495-500 https://medscimonit.com/abstract/index/idArt/897500

50.  Savelieff MG, Feldman EL, Stino AM. Neurological sequela and disruption of neuron-glia homeostasis in SARS-CoV-2 infection. Neurobiol Dis. 2022 Jun 15;168:105715. doi: 10.1016/j.nbd.2022.105715. Epub 2022 Mar 29. PMID: 35364273; PMCID: PMC8963977.

51.  Bayat AH, Azimi H, Hassani Moghaddam M, Ebrahimi V, Fathi M, Vakili K, Mahmoudiasl GR, Forouzesh M, Boroujeni ME, Nariman Z, Abbaszadeh HA, Aryan A, Aliaghaei A, Abdollahifar MA. COVID-19 causes neuronal degeneration and reduces neurogenesis in human hippocampus. Apoptosis. 2022 Dec;27(11-12):852-868. doi: 10.1007/s10495-022-01754-9. Epub 2022 Jul 25. PMID: 35876935; PMCID: PMC9310365.

52.  Theoharides TC, Kempuraj D. Role of SARS-CoV-2 Spike-Protein-Induced Activation of Microglia and Mast Cells in the Pathogenesis of Neuro-COVID. Cells. 2023 Feb 22;12(5):688. doi: 10.3390/cells12050688. PMID: 36899824; PMCID: PMC10001285.

53.  Rowe PC, Marden CL, Heinlein S, Edwards CC 2nd. Improvement of severe myalgic encephalomyelitis/chronic fatigue syndrome symptoms following surgical treatment of cervical spinal stenosis. J Transl Med. 2018 Feb 2;16(1):21. doi: 10.1186/s12967-018-1397-7. PMID: 29391028; PMCID: PMC5796598.

54.  Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA. Glial and neuronal control of brain blood flow. Nature. 2010 Nov 11;468(7321):232-43. doi: 10.1038/nature09613. PMID: 21068832; PMCID: PMC3206737.

55.  Słomko J, Estévez-López F, Kujawski S, Zawadka-Kunikowska M, Tafil-Klawe M, Klawe JJ, Morten KJ, Szrajda J, Murovska M, Newton JL, Zalewski P. Autonomic Phenotypes in Chronic Fatigue Syndrome (CFS) Are Associated with Illness Severity: A Cluster Analysis. J Clin Med. 2020 Aug 5;9(8):2531. doi: 10.3390/jcm9082531. PMID: 32764516; PMCID: PMC7464864.

56.  Jacob, L., Boisserand, L.S.B., Geraldo, L.H.M. et al. Anatomy and function of the vertebral column lymphatic network in mice. Nat Commun 10, 4594 (2019). https://doi.org/10.1038/s41467-019-12568-w

57.  Albayram,MS, Smith G, Tufan F, Tuna IS, Bostancıklıoğlu M, Zile M, Albayram O. Non-invasive MR imaging of human brain lymphatic networks with connections to cervical lymph nodes. Nat Commun. 2022 Jan 11;13(1):203. doi: 10.1038/s41467-021-27887-0. PMID: 35017525; PMCID: PMC8752739.

58.  Gowda SN, Munakomi S, De Jesus O. Brainstem Stroke. [Updated 2024 Feb 25]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK560896/

59.  Carthy, Elliott & Ellender, Tommas. (2021). Histamine, Neuroinflammation and Neurodevelopment: A Review. Frontiers in Neuroscience. 15. 10.3389/fnins.2021.680214

60.  Duan T, Du Y, Xing C, Wang HY, Wang RF. Toll-Like Receptor Signaling and Its Role in Cell-Mediated Immunity. Front Immunol. 2022 Mar 3;13:812774. doi: 10.3389/fimmu.2022.812774. PMID: 35309296; PMCID: PMC8927970.

61.  Verkhratsky, A., Butt, A., Li, B. et al. Astrocytes in human central nervous system diseases: a frontier for new therapies. Sig Transduct Target Ther 8, 396 (2023). https://doi.org/10.1038/s41392-023-01628-9

62.  Plantone D, Locci S, Bergantini L, et al. Brain neuronal and glial damage during acute COVID-19 infection in absence of clinical neurological manifestations. Journal of Neurology, Neurosurgery & Psychiatry 2022;93:1343-1348.

63.  Wang R, Reddy PH. Role of Glutamate and NMDA Receptors in Alzheimer's Disease. J Alzheimers Dis. 2017;57(4):1041-1048. doi: 10.3233/JAD-160763. PMID: 27662322; PMCID: PMC5791143.

64.  Zheng Z, Zhu T, Qu Y, Mu D. Blood Glutamate Levels in Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. PLoS One. 2016 Jul 8;11(7):e0158688. doi: 10.1371/journal.pone.0158688. PMID: 27390857; PMCID: PMC4938426.

65.  Maltezos S, Horder J, Coghlan S, Skirrow C, O'Gorman R, Lavender TJ, Mendez MA, Mehta M, Daly E, Xenitidis K, Paliokosta E, Spain D, Pitts M, Asherson P, Lythgoe DJ, Barker GJ, Murphy DG. Glutamate/glutamine and neuronal integrity in adults with ADHD: a proton MRS study. Transl Psychiatry. 2014 Mar 18;4(3):e373. doi: 10.1038/tp.2014.11. PMID: 24643164; PMCID: PMC3966039.

66.  Cheng, J., Liu, A., Shi, M. et al. Disrupted Glutamatergic Transmission in Prefrontal Cortex Contributes to Behavioral Abnormality in an Animal Model of ADHD. Neuropsychopharmacol 42, 2096–2104 (2017). https://doi.org/10.1038/npp.2017.30

67.  Hoffmann J, Charles A. Glutamate and Its Receptors as Therapeutic Targets for Migraine. Neurotherapeutics. 2018 Apr;15(2):361-370. doi: 10.1007/s13311-018-0616-5. PMID: 29508147; PMCID: PMC5935645.

68.  Bathel, A., Schweizer, L., Stude, P. et al. Increased thalamic glutamate/glutamine levels in migraineurs. J Headache Pain 19, 55 (2018). https://doi.org/10.1186/s10194-018-0885-8

69.  Harris RE. Elevated excitatory neurotransmitter levels in the fibromyalgia brain. Arthritis Res Ther. 2010;12(5):141. doi: 10.1186/ar3136. Epub 2010 Oct 1. PMID: 20959024; PMCID: PMC2991003.

70.  Ronald Zielman, Jannie P. Wijnen, Andrew Webb, Gerrit L. J. Onderwater, Itamar Ronen, Michel D. Ferrari, Hermien E. Kan, Gisela M. Terwindt, Mark C. Kruit, Cortical glutamate in migraine, Brain, Volume 140, Issue 7, July 2017, Pages 1859–1871, https://doi.org/10.1093/brain/awx130

  1. Kelmendi B, Adams TG, Yarnell S, Southwick S, Abdallah CG, Krystal JH. PTSD: from neurobiology to pharmacological treatments. Eur J Psychotraumatol. 2016 Nov 8;7:31858. doi: 10.3402/ejpt.v7.31858. PMID: 27837583; PMCID: PMC5106865.

  2. Averill LA, Jiang L, Purohit P, Coppoli A, Averill CL, Roscoe J, Kelmendi B, De Feyter HM, de Graaf RA, Gueorguieva R, Sanacora G, Krystal JH, Rothman DL, Mason GF, Abdallah CG. Prefrontal Glutamate Neurotransmission in PTSD: A Novel Approach to Estimate Synaptic Strength in Vivo in Humans. Chronic Stress (Thousand Oaks). 2022 Apr 11;6:24705470221092734. doi: 10.1177/24705470221092734. PMID: 35434443; PMCID: PMC9008809.

73.  Zhang Z, Zhang S, Fu P, Zhang Z, Lin K, Ko JK, Yung KK. Roles of Glutamate Receptors in Parkinson's Disease. Int J Mol Sci. 2019 Sep 6;20(18):4391. doi: 10.3390/ijms20184391. PMID: 31500132; PMCID: PMC6769661.

74.  Jenner,P., Caccia,C. The Role of Glutamate in the Healthy Brain and in the Pathophysiology of Parkinson’s Disease. Touch Neurology. 2019. https://touchneurology.com/parkinsons-disease/journal-articles/the-role-of-glutamate-in-the-healthy-brain-and-in-the-pathophysiology-of-parkinsons-disease-2/

75.  Wang J, Wang F, Mai D, Qu S. Molecular Mechanisms of Glutamate Toxicity in Parkinson's Disease. Front Neurosci. 2020 Nov 26;14:585584. doi: 10.3389/fnins.2020.585584. PMID: 33324150; PMCID: PMC7725716

76.  Gautam, D.; Naik, U.P.; Naik, M.U.; Yadav, S.K.; Chaurasia, R.N.; Dash, D. Glutamate Receptor Dysregulation and Platelet Glutamate Dynamics in Alzheimer’s and Parkinson’s Diseases: Insights into Current Medications. Biomolecules 202313, 1609. https://doi.org/10.3390/biom13111609

77.  Wang Y, Zou W, Jin Z, Yin S, Chi X, Li J, Sun Y, Wu J, Kou L, Xia Y, Wang T. Sleep, glymphatic system, and Parkinson's disease. Ageing and Neurodegenerative Diseases. 2024; 4(2):6. http://dx.doi.org/10.20517/and.2023.56

78.  Exelby, G. The Glymphatic System. 2023. https://www.mcmc-research.com/post/the-glymphatic-system

79.  Mogensen, F.L.-H.; Delle, C.; Nedergaard, M. The Glymphatic System (En)during Inflammation. Int. J. Mol. Sci. 2021, 22, 7491. https://doi.org/10.3390/ijms22147491

80.  Dunn KM, Hill-Eubanks DC, Liedtke WB, Nelson MT. TRPV4 channels stimulate Ca2+-induced Ca2+ release in astrocytic endfeet and amplify neurovascular coupling responses. Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):6157-62. doi: 10.1073/pnas.1216514110. Epub 2013 Mar 25. PMID: 23530219; PMCID: PMC3625327.

81.  Steardo L Jr, Steardo L, Scuderi C. Astrocytes and the Psychiatric Sequelae of COVID-19: What We Learned from the Pandemic. Neurochem Res. 2023 Apr;48(4):1015-1025. doi: 10.1007

82.  Exelby, G. Long COVID Immune Dysfunction. 2024. https://www.mcmc-research.com/post/long-covid-immune-dysfunction

83.  Ransohoff RM, Brown MA. Innate immunity in the central nervous system. J Clin Invest. 2012 Apr;122(4):1164-71. doi: 10.1172/JCI58644. Epub 2012 Apr 2. PMID: 22466658; PMCID: PMC3314450.

84.  Pretorius E, Venter C, Laubscher GJ, Kotze MJ, Oladejo SO, Watson LR, Rajaratnam K, Watson BW, Kell DB. Prevalence of symptoms, comorbidities, fibrin amyloid microclots and platelet pathology in individuals with Long COVID/Post-Acute Sequelae of COVID-19 (PASC). Cardiovasc Diabetol. 2022 Aug 6;21(1):148. doi: 10.1186/s12933-022-01579-5. PMID: 35933347; PMCID: PMC9356426.

85.  Kruger, A., Vlok, M., Turner, S. et al. Proteomics of fibrin amyloid microclots in long COVID/post-acute sequelae of COVID-19 (PASC) shows many entrapped pro-inflammatory molecules that may also contribute to a failed fibrinolytic system. Cardiovasc Diabetol 21, 190 (2022). https://doi.org/10.1186/s12933-022-01623-4

86.  Hotowitz,T, Pellurin,L, Zimmer, E, Guedj,E. Brain fog in long COVID: A glutamatergic hypothesis with astrocyte dysfunction accounting for brain PET glucose hypometabolism. Elsevier, Medical Hypotheses. https://doi.org/10.1016/j.mehy.2023.111186

87.  Savelieff MG, Feldman EL, Stino AM. Neurological sequela and disruption of neuron-glia homeostasis in SARS-CoV-2 infection. Neurobiol Dis. 2022 Jun 15;168:105715. doi: 10.1016/j.nbd.2022.105715. Epub 2022 Mar 29. PMID: 35364273; PMCID: PMC8963977.

88.  Williams, C. Sympathetic Innervation to the Head and Neck. Teach Me Anatomy 2022. https://teachmeanatomy.info/head/nerves/sympathetic/

89.  Exelby,G. Mould and PTSD in Immune Dysregulation. 2024. https://www.mcmc-research.com/post/mould-and-ptsd-in-immune-dysregulation

90.  Chen XQ, Bo S, Zhong SZ. Nerves accompanying the vertebral artery and their clinical relevance. Spine (Phila Pa 1976). 1988 Dec;13(12):1360-4. doi: 10.1097/00007632-198812000-00006. PMID: 2463679.

91.  Piccinin MA, Munakomi S. Neuroanatomy, Vertebrobasilar System.  StatPearls 2024 https://www.ncbi.nlm.nih.gov/books/NBK540995/

92.  Phulwani NK, Esen N, Syed MM, Kielian T. TLR2 expression in astrocytes is induced by TNF-alpha- and NF-kappa B-dependent pathways. J Immunol. 2008 Sep 15;181(6):3841-9. doi: 10.4049/jimmunol.181.6.3841. PMID: 18768838; PMCID: PMC2649826.

93.  Borghi MO, Beltagy A, Garrafa E, Curreli D, Cecchini G, Bodio C, Grossi C, Blengino S, Tincani A, Franceschini F, Andreoli L, Lazzaroni MG, Piantoni S, Masneri S, Crisafulli F, Brugnoni D, Muiesan ML, Salvetti M, Parati G, Torresani E, Mahler M, Heilbron F, Pregnolato F, Pengo M, Tedesco F, Pozzi N, Meroni PL. Anti-Phospholipid Antibodies in COVID-19 Are Different From Those Detectable in the Anti-Phospholipid Syndrome. Front Immunol. 2020 Oct 15;11:584241. doi: 10.3389/fimmu.2020.584241. PMID: 33178218; PMCID: PMC7593765.

94.  Ryu, J.K., Yan, Z., Montano, M. et al. Fibrin drives thromboinflammation and neuropathology in COVID-19. Nature (2024). https://doi.org/10.1038/s41586-024-07873-4

95.  Nunes JM, Kell DB, Pretorius E. Cardiovascular and haematological pathology in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): A role for viruses. Blood Rev. 2023 Jul;60:101075. doi: 10.1016/j.blre.2023.101075. Epub 2023 Mar 20. PMID: 36963989; PMCID: PMC10027292.

96.  Gonçalves CA, Bobermin LD, Sesterheim P, Netto CA. SARS-CoV-2-Induced Amyloidgenesis: Not One, but Three Hypotheses for Cerebral COVID-19 Outcomes. Metabolites. 2022 Nov 11;12(11):1099. doi: 10.3390/metabo12111099. PMID: 36422238; PMCID: PMC9692683.

97.  Nelson T, Zhang LX, Guo H, Nacul L, Song X. Brainstem Abnormalities in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Scoping Review and Evaluation of Magnetic Resonance Imaging Findings. Front Neurol. 2021 Dec 17;12:769511. doi: 10.3389/fneur.2021.769511. PMID: 34975729; PMCID: PMC8718708.

98.  Berg D, Berg LH, Couvaras J, Harrison H. Chronic fatigue syndrome and/or fibromyalgia as a variation of antiphospholipid antibody syndrome: an explanatory model and approach to laboratory diagnosis. Blood Coagul Fibrinolysis. 1999 Oct;10(7):435-8. doi: 10.1097/00001721-199910000-00006. PMID: 10695770.

99.  Hannan KL, Berg DE, Baumzweiger W, Harrison HH, Berg LH, Ramirez R, Nichols D. Activation of the coagulation system in Gulf War Illness: a potential pathophysiologic link with chronic fatigue syndrome. A laboratory approach to diagnosis. Blood Coagul Fibrinolysis. 2000 Oct;11(7):673-8. doi: 10.1097/00001721-200010000-00013. PMID: 11085289.

100.                  Toljan K, Vrooman B. Low-Dose Naltrexone (LDN)-Review of Therapeutic Utilization. Med Sci (Basel). 2018 Sep 21;6(4):82. doi: 10.3390/medsci6040082. PMID: 30248938; PMCID: PMC6313374.

101.                  Isman A, Nyquist A, Strecker B, Harinath G, Lee V, Zhang X, Zalzala S. Low-dose naltrexone and NAD+ for the treatment of patients with persistent fatigue symptoms after COVID-19. Brain Behav Immun Health. 2024 Feb 1;36:100733. doi: 10.1016/j.bbih.2024.100733. PMID: 38352659; PMCID: PMC10862402.

102.                  Szlufik S, Kopeć K, Szleszkowski S, Koziorowski D. Glymphatic System Pathology and Neuroinflammation as Two Risk Factors of Neurodegeneration. Cells. 2024 Feb 5;13(3):286. doi: 10.3390/cells13030286. PMID: 38334678; PMCID: PMC10855155.

103.                  AbuAlrob MA, Tadi P. Neuroanatomy, Nucleus Solitarius. [Updated 2023 Jul 24]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK549831/

104.                  Johnson,C. Found- the Master Immune Switch in the Brain: An ME/CFS and Long COVID Perspective. Health Rising. 2024. https://www.healthrising.org/blog/2024/05/25/master-immune-switch-brain-chronic-fatigue-long-covid/

105.                  Jin H, Li M, Jeong E, Castro-Martinez F, Zuker CS. A body-brain circuit that regulates body inflammatory responses. Nature. 2024 Jun;630(8017):695-703. doi: 10.1038/s41586-024-07469-y. Epub 2024 May 1. PMID: 38692285.

106.                  Katz EA, Katz SB, Fedorchuk CA, Lightstone DF, Banach CJ, Podoll JD. Increase in cerebral blood flow indicated by increased cerebral arterial area and pixel intensity on brain magnetic resonance angiogram following correction of cervical lordosis. Brain Circ 2019;5:19-26.

107.                  Exelby, G. Intracranial Hypertension, Intracranial Hypotension, CSF Leaks and Craniovascular Pressure Change.  2024. https://www.mcmc-research.com/post/intracranial-hypertension-intracranial-hypotension-and-craniovascular-pressure-change

108.                  Exelby,G. Intracranial Hypertension, the link between Vascular and CSF Dysfunction. 2024. https://www.mcmc-research.com/post/intracranial-hypertension-the-link-betweenvascular-and-csf-dysfunction

109.                  Wells R, Malik V, Brooks AG, Linz D, Elliott AD, Sanders P, Page A, Baumert M, Lau DH. Cerebral Blood Flow and Cognitive Performance in Postural Tachycardia Syndrome: Insights from Sustained Cognitive Stress Test. J Am Heart Assoc. 2020 Dec 15;9(24):e017861. doi: 10.1161/JAHA.120.017861. Epub 2020 Dec 5. PMID: 33280488; PMCID: PMC7955388.

110.                  van Campen CLMCV, Rowe PC, Visser FC. Orthostatic Symptoms and Reductions in Cerebral Blood Flow in Long-Haul COVID-19 Patients: Similarities with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Medicina (Kaunas). 2021 Dec 24;58(1):28. doi: 10.3390/medicina58010028. PMID: 35056336; PMCID: PMC8778312.

111.                  van Campen CLMC, Rowe PC, Visser FC. Deconditioning does not explain orthostatic intolerance in ME/CFS (myalgic encephalomyelitis/chronic fatigue syndrome). J Transl Med. 2021 doi: 10.1186/s12967-021-02819-0. PMID: 33947430; PMCID: PMC8097965.

112.                  Duan T, Du Y, Xing C, Wang HY, Wang RF. Toll-Like Receptor Signaling and Its Role in Cell-Mediated Immunity. Front Immunol. 2022 Mar 3;13:812774. doi: 10.3389/fimmu.2022.812774. PMID: 35309296; PMCID: PMC8927970.

113.                  Mantovani S, Oliviero B, Varchetta S, Renieri A, Mondelli MU. TLRs: Innate Immune Sentries against SARS-CoV-2 Infection. Int J Mol Sci. 2023 Apr 29;24(9):8065. doi: 10.3390/ijms24098065. PMID: 37175768; PMCID: PMC10178469.

114.                  Anilkumar S, Wright-Jin E. NF-κB as an Inducible Regulator of Inflammation in the Central Nervous System. Cells. 2024 Mar 11;13(6):485. doi: 10.3390/cells13060485. PMID: 38534329; PMCID: PMC10968931.

115.                  Gudowska-Sawczuk M, Mroczko B. The Role of Nuclear Factor Kappa B (NF-κB) in Development and Treatment of COVID-19: Review. Int J Mol Sci. 2022 May 9;23(9):5283. doi: 10.3390/ijms23095283. PMID: 35563673; PMCID: PMC9101079.

116.                  Myers B, Scheimann JR, Franco-Villanueva A, Herman JP. Ascending mechanisms of stress integration: Implications for brainstem regulation of neuroendocrine and behavioral stress responses. Neurosci Biobehav Rev. 2017 Mar;74(Pt B):366-375. doi: 10.1016/j.neubiorev.2016.05.011. Epub 2016 May 18. PMID: 27208411; PMCID: PMC5115997.

117.                  Farrell JS, Colangeli R, Wolff MD, Wall AK, Phillips TJ, George A, Federico P, Teskey GC. Postictal hypoperfusion/hypoxia provides the foundation for a unified theory of seizure-induced brain abnormalities and behavioral dysfunction. Epilepsia. 2017 Sep;58(9):1493-1501. doi: 10.1111/epi.13827. Epub 2017 Jun 20. PMID: 28632329.

118.                  Singh U, Jiang J, Saito K, Toth BA, Dickey JE, Rodeghiero SR, Deng Y, Deng G, Xue B, Zhu Z, Zingman LV, Geerling JC, Cui H. Neuroanatomical organization and functional roles of PVN MC4R pathways in physiological and behavioral regulations. Mol Metab. 2022 Jan;55:101401. doi: 10.1016/j.molmet.2021.101401. Epub 2021 Nov 22. PMID: 34823066; PMCID: PMC8689242.

119.                  Andrew RD, Hartings JA, Ayata C, Brennan KC, Dawson-Scully KD, Farkas E, Herreras O, Kirov SA, Müller M, Ollen-Bittle N, Reiffurth C, Revah O, Robertson RM, Shuttleworth CW, Ullah G, Dreier JP. The Critical Role of Spreading Depolarizations in Early Brain Injury: Consensus and Contention. Neurocrit Care. 2022 Jun;37(Suppl 1):83-101. doi: 10.1007/s12028-021-01431-w. Epub 2022 Mar 7. PMID: 35257321; PMCID: PMC9259543.

120.                  He Q, Ma Y, Liu J, Zhang D, Ren J, Zhao R, Chang J, Guo ZN, Yang Y. Biological Functions and Regulatory Mechanisms of Hypoxia-Inducible Factor-1α in Ischemic Stroke. Front Immunol. 2021 Dec 13;12:801985. doi: 10.3389/fimmu.2021.801985. PMID: 34966392; PMCID: PMC8710457

121.                  Tang YY, Wang DC, Wang YQ, Huang AF, Xu WD. Emerging role of hypoxia-inducible factor-1α in inflammatory autoimmune diseases: A comprehensive review. Front Immunol. 2023 Jan 25;13:1073971. doi: 10.3389/fimmu.2022.1073971. PMID: 36761171; PMCID: PMC9905447

122.                  AbuAlrob MA, Tadi P. Neuroanatomy, Nucleus Solitarius. [Updated 2023 Jul 24]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK549831/

123.                  Paxinos,G., X-Feng,H., Sengul,G., Watson.C. The Human Nervous System (3rd Edition), Chapter 8-Organisation of Brainstem Nuclei. Academic Press. 2012. https://doi.org/10.1016/B978-0-12-374236-0.10008-2

124.                  Basinger,J, Hogg, J. Neuroanatomy,Brainstem. Statpearls. 2023. https://www.ncbi.nlm.nih.gov/books/NBK544297/#:~:text=It%20is%20composed%20of%20three,%2C%20heart%20rate%2C%20and%20sleep.

125.                  HPA Axis. Wikipedia. https://en.wikipedia.org/wiki/Hypothalamic%E2%80%93pituitary%E2%80%93adrenal_axis

126.                  Guy-Evans, O. (2021, Sept 27). Hypothalamic-Pituitary-Adrenal Axis. Simply Psychology. www.simplypsychology.org/hypothalamic–pituitary–adrenal-axis.html

127.                  Herman JP. Regulation of Hypothalamo-Pituitary-Adrenocortical Responses to Stressors by the Nucleus of the Solitary Tract/Dorsal Vagal Complex. Cell Mol Neurobiol. 2018 Jan;38(1):25-35. doi: 10.1007/s10571-017-0543-8. Epub 2017 Sep 11. PMID: 28895001; PMCID: PMC5918341.

128.                  Blausen.com staff (2014). "Medical gallery of Blausen Medical 2014". WikiJournal of Medicine 1 (2). DOI:10.15347/wjm/2014.010ISSN 2002-4436

129.                  Torrico TJ, Munakomi S. Neuroanatomy, Thalamus. In: StatPearls [Internet]. Treasure Island (FL): updated 2023 https://www.ncbi.nlm.nih.gov/books/NBK542184/

130.                  Fogwe LA, Reddy V, Mesfin FB. Neuroanatomy, Hippocampus. [Updated 2023] StatPearls [Internet]. Treasure Island (FL): https://www.ncbi.nlm.nih.gov/books/NBK482171/

131.                  AbuHasan Q, Reddy V, Siddiqui W. Neuroanatomy, Amygdala. [Updated 2023]. In: StatPearls Treasure Island (FL): StatPearls Publishing; 2024 https://www.ncbi.nlm.nih.gov/books/NBK537102/

132.                  Klein R, Soung A, Sissoko C, Nordvig A, Canoll P, Mariani M, Jiang X, Bricker T, Goldman J, Rosoklija G, Arango V, Underwood M, Mann JJ, Boon A, Dowrk A, Boldrini M. COVID-19 induces neuroinflammation and loss of hippocampal neurogenesis. Res Sq [Preprint]. 2021 Oct 29:rs.3.rs-1031824. doi: 10.21203/rs.3.rs-1031824/v1. Update in: Brain. 2022 Dec 19;145(12):4193-4201. doi: 10.1093/brain/awac270. PMID: 34729556; PMCID: PMC8562542.

133.                  Invernizzi A, Renzetti S, van Thriel C, Rechtman E, Patrono A, Ambrosi C, Mascaro L, Cagna G, Gasparotti R, Reichenberg A, Tang CY, Lucchini RG, Wright RO, Placidi D, Horton MK. Covid-19 related cognitive, structural and functional brain changes among Italian adolescents and young adults: a multimodal longitudinal case-control study. medRxiv [Preprint]. 2023 Jul 23:2023.07.19.23292909. doi: 10.1101/2023.07.19.23292909. PMID: 37503251; PMCID: PMC10371098.

134.                  Zhou, S., Wei, T., Liu, X. et al. Causal effects of COVID-19 on structural changes in specific brain regions: a Mendelian randomization study. BMC Med 21, 261 (2023). https://doi.org/10.1186/s12916-023-02952-1

135.                  Salim S. Oxidative Stress and the Central Nervous System. J Pharmacol Exp Ther. 2017 Jan;360(1):201-205. doi: 10.1124/jpet.116.237503. Epub 2016 Oct 17. PMID: 27754930; PMCID: PMC5193071.

136.                  Benarroch, E.: The locus ceruleus norepinephrine system Functional organization and potential clinical significance. Neurology Nov 2009, 73 (20) 1699-1704; DOI: 10.1212/WNL.0b013e3181c2937c

137.                  Evans AK, Defensor E, Shamloo M. Selective Vulnerability of the Locus Coeruleus Noradrenergic System and its Role in Modulation of Neuroinflammation, Cognition, and Neurodegeneration. Front Pharmacol. 2022 Nov 30;13:1030609. doi: 10.3389/fphar.2022.1030609. PMID: 36532725; PMCID: PMC9748190.

138.                  Zhukova, G.P. The afferent pathway to the locus coeruleus from the nucleus of the solitary tract. Neurosci Behav Physiol 10, 27–32 (1980). https://doi.org/10.1007/BF01182232

139.                  Eskandari E, Eaves CJ. Paradoxical roles of caspase-3 in regulating cell survival, proliferation, and tumorigenesis. J Cell Biol. 2022 Jun 6;221(6):e202201159. doi: 10.1083/jcb.202201159. Epub 2022 May 12. PMID: 35551578; PMCID: PMC9106709.

140.                  Paxinos,G., X-Feng,H., Sengul,G., Watson.C. The Human Nervous System (3rd Edition), Chapter 8-Organisation of Brainstem Nuclei. Academic Press. 2012. https://doi.org/10.1016/B978-0-12-374236-0.10008-2

141.                  Lawrence AJ, Jarrott B. Neurochemical modulation of cardiovascular control in the nucleus tractus solitarius. Prog Neurobiol. 1996 Jan;48(1):21-53. doi: 10.1016/0301-0082(95)00034-8. PMID: 8830347.

142.                  Talman WT. Glutamatergic transmission in the nucleus tractus solitarii: from server to peripherals in the cardiovascular information superhighway. Braz J Med Biol Res. 1997 Jan;30(1):1-7. doi: 10.1590/s0100-879x1997000100001. PMID: 9222396.

143.                  Chen, C. The NTS in blood pressure regulation. Autonomic Neuroscience. 2015. DOI: https://doi.org/10.1016/j.autneu.2015.07.305

144.                  Baker E, Lui F. Neuroanatomy, Vagal Nerve Nuclei. [Updated 2023 Jul 24]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK545209/

145.                  Neff RA, Mihalevich M, Mendelowitz D. Stimulation of NTS activates NMDA and non-NMDA receptors in rat cardiac vagal neurons in the nucleus ambiguus. Brain Res. 1998 May 11;792(2):277-82. doi: 10.1016/s0006-8993(98)00149-8. PMID: 9593939.

146.                  Gowda SN, Munakomi S, De Jesus O. Brainstem Stroke. [Updated 2024 Feb 25]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK560896/

147.                  Howland RH. Vagus Nerve Stimulation. Curr Behav Neurosci Rep. 2014 Jun;1(2):64-73. doi: 10.1007/s40473-014-0010-5. PMID: 24834378; PMCID: PMC4017164.

148.                  Mayo Clinic. Vagus Nerve Stimulation. https://www.mayoclinic.org/tests-procedures/vagus-nerve-stimulation/about/pac-20384565

149.                  Schulman,J. What is the Vagus Nerve. Healthline. https://www.healthline.com/human-body-maps/vagus-nerve

150.                  Bari BA, Chokshi V, Schmidt K. Locus coeruleus-norepinephrine: basic functions and insights into Parkinson's disease. Neural Regen Res. 2020 Jun;15(6):1006-1013. doi: 10.4103/1673-5374.270297. PMID: 31823870; PMCID: PMC7034292.

151.                  Forstenpointner J, Maallo AMS, Elman I, Holmes S, Freeman R, Baron R, Borsook D. The solitary nucleus connectivity to key autonomic regions in humans. Eur J Neurosci. 2022 Jul;56(2):3938-3966. doi: 10.1111/ejn.15691. Epub 2022 Jun 21. PMID: 35545280.

152.                  Kerfoot EC, Chattillion EA, Williams CL. Functional interactions between the nucleus tractus solitarius (NTS) and nucleus accumbens shell in modulating memory for arousing experiences. Neurobiol Learn Mem. 2008 Jan;89(1):47-60. doi: 10.1016/j.nlm.2007.09.005. Epub 2007 Oct 26. PMID: 17964820; PMCID: PMC2175480.

153.                  Koning E, Powers JM, Ioachim G, Stroman PW. A Comparison of Functional Connectivity in the Human Brainstem and Spinal Cord Associated with Noxious and Innocuous Thermal Stimulation Identified by Means of Functional MRI. Brain Sci. 2023 May 9;13(5):777. doi: 10.3390/brainsci13050777. PMID: 37239249; PMCID: PMC10216620.

154.                  Godoy LD, Rossignoli MT, Delfino-Pereira P, Garcia-Cairasco N, de Lima Umeoka EH. A Comprehensive Overview on Stress Neurobiology: Basic Concepts and Clinical Implications. Front Behav Neurosci. 2018 Jul 3;12:127. doi: 10.3389/fnbeh.2018.00127. PMID: 30034327; PMCID: PMC6043787.

155.                  Herman JP. Regulation of Hypothalamo-Pituitary-Adrenocortical Responses to Stressors by the Nucleus of the Solitary Tract/Dorsal Vagal Complex. Cell Mol Neurobiol. 2018 Jan;38(1):25-35. doi: 10.1007/s10571-017-0543-8. Epub 2017 Sep 11. PMID: 28895001; PMCID: PMC5918341.

156.                  Herman JP, Ostrander MM, Mueller NK, Figueiredo H. Limbic system mechanisms of stress regulation: hypothalamo-pituitary-adrenocortical axis. Prog Neuropsychopharmacol Biol Psychiatry. 2005 Dec;29(8):1201-13. doi: 10.1016/j.pnpbp.2005.08.006. Epub 2005 Nov 4. PMID: 16271821.

157.                  Godoy LD, Rossignoli MT, Delfino-Pereira P, Garcia-Cairasco N, de Lima Umeoka EH. A Comprehensive Overview on Stress Neurobiology: Basic Concepts and Clinical Implications. Front Behav Neurosci. 2018 Jul 3;12:127. doi: 10.3389/fnbeh.2018.00127. PMID: 30034327; PMCID: PMC6043787.

158.                  Teckentrup, Vanessa & Krylova, Marina & Jamalabadi, Hamidreza & Neubert, Sandra & Neuser, Monja & Hartig, Renée & Fallgatter, Andreas & Walter, Martin & Kroemer, Nils. (2021). NBrain signaling dynamics after vagus nerve stimulation. NeuroImage. 245. 118679. 10.1016/j.neuroimage.2021.118679.

159.                  Herman JP, McKlveen JM, Ghosal S, Kopp B, Wulsin A, Makinson R, Scheimann J, Myers B. Regulation of the Hypothalamic-Pituitary-Adrenocortical Stress Response. Compr Physiol. 2016 Mar 15;6(2):603-21. doi: 10.1002/cphy.c150015. PMID: 27065163; PMCID: PMC4867107.

160.                  Blessing WW. Inadequate frameworks for understanding bodily homeostasis. Trends Neurosci. 1997 Jun;20(6):235-9. doi: 10.1016/s0166-2236(96)01029-6. PMID: 9185301.

161.                  Marieb,H.,Hoehn, K. Human Anatomy & Physiology, 8th Ed, Pearson International, 2010, p 538

162.                  Hampton,L. (Ed) Baroreceptors. Physiopedia. https://www.physio-pedia.com/Baroreceptors

163.                  Elsaafien K, Harden SW, Johnson DN, Kimball AK, Sheng W, Smith JA, Scott KA, Frazier CJ, de Kloet AD, Krause EG. A Novel Organ-Specific Approach to Selectively Target Sensory Afferents Innervating the Aortic Arch. Front Physiol. 2022 Mar 24;13:841078. doi: 10.3389/fphys.2022.841078. PMID: 35399269; PMCID: PMC8987286.

164.                  Kattar N, Flowers T. Anatomy, Head and Neck, Sympathetic Chain. StatPearls 2022. https://www.ncbi.nlm.nih.gov/books/NBK563206/

165.                  Wang X, Shen X, Yan Y, Li H. Pyruvate dehydrogenase kinases (PDKs): an overview toward clinical applications. Biosci Rep. 2021 Apr 30;41(4):BSR20204402. doi: 10.1042/BSR20204402. PMID: 33739396; PMCID: PMC8026821.

166.                  Jeon JH, Thoudam T, Choi EJ, Kim MJ, Harris RA, Lee IK. Loss of metabolic flexibility as a result of overexpression of pyruvate dehydrogenase kinases in muscle, liver and the immune system: Therapeutic targets in metabolic diseases. J Diabetes Investig. 2021 Jan;12(1):21-31. doi: 10.1111/jdi.13345. Epub 2020 Sep 10. PMID: 32628351; PMCID: PMC7779278.

167.                  Abnormalities of the head and neck arteries (Cerebrovascular Abnormalities). Children’s Wisconsin. https://childrenswi.org/medical-care/birthmarks-and-vascular-anomalies-center/conditions/phace-syndrome/phace-syndrome-handbook/abnormalities-of-the-head-and-neck-arteries

168.                  Gillessen T, Budd SL, Lipton SA. Excitatory Amino Acid Neurotoxicity. In: Madame Curie Bioscience Database [Internet]. Austin (TX): Landes Bioscience; 2000-2013. Available from: https://www.ncbi.nlm.nih.gov/books/NBK6108/

169.                  Rajeh, N.A. Mechanistic progression of acrylamide neurotoxicity linked to neurodegeneration and mitigation strategies. Discov Appl Sci 6, 181 (2024). https://doi.org/10.1007/s42452-024-05850-0

170.                  Atila A, Alay H, Yaman ME, Akman TC, Cadirci E, Bayrak B, Celik S, Atila NE, Yaganoglu AM, Kadioglu Y, Halıcı Z, Parlak E, Bayraktutan Z. The serum amino acid profile in COVID-19. Amino Acids. 2021 Oct;53(10):1569-1588. doi: 10.1007/s00726-021-03081-w. Epub 2021 Oct 4. PMID: 34605988; PMCID: PMC8487804.

171.                  Mazza MG, Palladini M, Poletti S, Benedetti F. Post-COVID-19 Depressive Symptoms: Epidemiology, Pathophysiology, and Pharmacological Treatment. CNS Drugs. 2022 Jul;36(7):681-702. doi: 10.1007/s40263-022-00931-3. Epub 2022 Jun 21. PMID: 35727534; PMCID: PMC9210800.

172.                  Jafari Khaljiri H, Jamalkhah M, Amini Harandi A, Pakdaman H, Moradi M, Mowla A. Comprehensive Review on Neuro-COVID-19 Pathophysiology and Clinical Consequences. Neurotox Res. 2021 Oct;39(5):1613-1629. doi: 10.1007/s12640-021-00389-z. Epub 2021 Jun 25. PMID: 34169404; PMCID: PMC8225460.

173.                  Holeček M. Aspartic Acid in Health and Disease. Nutrients. 2023 Sep 17;15(18):4023. doi: 10.3390/nu15184023. PMID: 37764806; PMCID: PMC10536334.

174.                  Davis, H.E., McCorkell, L., Vogel, J.M. et al. Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol 21, 133–146 (2023). https://doi.org/10.1038/s41579-022-00846-2

175.                  Davis, H.E., McCorkell, L., Vogel, J.M. et al. Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol 21, 133–146 (2023). https://doi.org/10.1038/s41579-022-00846-2

176.                  Li, M., Castro Lingl, S. & Yang, J. Reduction of hemagglutination induced by a SARS-CoV-2 spike protein fragment using an amyloid-binding benzothiazole amphiphile. Sci Rep 14, 12317 (2024). https://doi.org/10.1038/s41598-024-59585-4

177.                  Nyström S, Hammarström P. Amyloidogenesis of SARS-CoV-2 Spike Protein. J Am Chem Soc. 2022 May 25;144(20):8945-8950. doi: 10.1021/jacs.2c03925. Epub 2022 May 17. PMID: 35579205; PMCID: PMC9136918.

178.                  Chen, J., Chen, J., Lei, Z. et al. Amyloid precursor protein facilitates SARS-CoV-2 virus entry into cells and enhances amyloid-β-associated pathology in APP/PS1 mouse model of Alzheimer’s disease. Transl Psychiatry 13, 396 (2023).

179.                  Dingledine R, McBain CJ. Glutamate and Aspartate Are the Major Excitatory Transmitters in the Brain. In: Siegel GJ, Agranoff BW, Albers RW, et al., editors. Basic Neurochemistry: Molecular, Cellular and Medical Aspects. 6th edition. Philadelphia: Lippincott-Raven; 1999.  https://www.ncbi.nlm.nih.gov/books/NBK28252/

14 views0 comments

Comments


bottom of page